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Applications of Propositional Logic (2/13)
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Translating English Sentences

• There are many reasons to translate English sentences 

into expressions involving propositional variables and 

logical connectives. In particular, English (and every 

other human language) is often ambiguous. Translating 

sentences into compound statements (and other types of 

logical expressions, which we will introduce later in this 

chapter) removes the ambiguity.
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Example 1

You can access the Internet from campus only if you are a 

computer science major or you are not a student.
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Applications of Propositional Logic (4/13)
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Example 1

You can access the Internet from campus only if you are a 

computer science major or you are not a student.

Let 𝑝, 𝑞 and 𝑟 be the propositions:

𝑝: You can access the Internet from campus.

𝑞: You are a computer science major.

𝑟: You are a student.
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Applications of Propositional Logic (4/13)
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Example 1

(You can access the Internet from campus) only if (you are 

a computer science major or you are not a student).

𝑝 → 𝑞Let 𝑝, 𝑞 and 𝑟 be the propositions:

𝑝: You can access the Internet from campus.

𝑞: You are a computer science major.

𝑟: You are a student.
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Example 1

(You can access the Internet from campus) only if (you are 

a computer science major or you are not a student).

𝑝 → 𝑞Let 𝑝, 𝑞 and 𝑟 be the propositions:

𝑝: You can access the Internet from campus.

𝑞: You are a computer science major.

𝑟: You are a student.

The sentence can be represented by logic as 𝑝 → (𝑞 ∨ ¬𝑟)
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Example 2

The automated reply cannot be sent when the file system is 

full.
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Example 2

The automated reply cannot be sent when the file system is 

full.

Let 𝑝 and 𝑞 be the propositions:

𝑝: The automated reply can be sent .

𝑞: The file system is full.

𝑝 → 𝑞
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Applications of Propositional Logic (8/13)
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Example 2

(The automated reply cannot be sent) when (the file system 

is full.)

Let 𝑝 and 𝑞 be the propositions:

𝑝: The automated reply can be sent .

𝑞: The file system is full.

The sentence can be represented by logic as 𝑞 → ¬𝑝

𝑝 → 𝑞
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Logic Circuits

• A logic circuit (or digital circuit) receives input signals 

𝑝1, 𝑝2, … , 𝑝𝑛, each a bit [either 0 (off) or 1 (on)], and 

produces output signals 𝑠1, 𝑠2, … , 𝑠𝑛, each a bit.

• In this course, we will restrict our attention to logic 

circuits with a single output signal; in general, digital 

circuits may have multiple outputs. 
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Applications of Propositional Logic (10/13)
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Logic Circuits

• Complicated digital circuits can be constructed from 

three basic circuits, called gates.
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Example 1

• Determine the output for the combinatorial circuit in the 

following figure. 
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• Determine the output for the combinatorial circuit in the 

following figure. 
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Applications of Propositional Logic (12/13)
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Example 2

• Build a digital circuit that produces the output 

(𝑝 ∨ ¬𝑟) ∧ (¬𝑝 ∨ (𝑞 ∨ ¬𝑟))

when given input bits 𝑝, 𝑞, and 𝑟.
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Example 2

(𝑝 ∨ ¬𝑟) ∧ (¬𝑝 ∨ (𝑞 ∨ ¬𝑟))
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Example 2

(𝑝 ∨ ¬𝑟) ∧ (¬𝑝 ∨ (𝑞 ∨ ¬𝑟))
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Applications of Propositional Logic (13/13)
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Example 2

(𝑝 ∨ ¬𝑟) ∧ (¬𝑝 ∨ (𝑞 ∨ ¬𝑟))
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Compound Propositions Classification (1/2)

A compound proposition 

that is always true
A compound proposition 

that is always false

A compound proposition 

that is sometimes true 

and sometimes false

Discrete Mathematics



Example:

• Show that following conditional statement is a tautology

by using truth table

𝑝 ∧ 𝑞 → 𝑝
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Compound Propositions Classification (2/2)
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by using truth table
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Compound Propositions Classification (2/2)

𝒑 𝒒 𝒑 ∧ 𝒒 𝒑 ∧ 𝒒 → 𝒑

𝐓 𝐓 𝐓 𝐓

𝐓 𝐅 𝐅 𝐓

𝐅 𝐓 𝐅 𝐓

𝐅 𝐅 𝐅 𝐓

Discrete Mathematics



Logically equivalent:

Compound propositions that have the same truth values in 

all possible cases are called logically equivalent.
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Logical Equivalences (1/6)

≡
⇔

Discrete Mathematics
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Logical Equivalences (1/3)
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Logical Equivalences (5/6)

Example 1:

Show that ¬(𝑝 ∨ (¬𝑝 ∧ 𝑞)) and ¬𝑝 ∧ ¬𝑞 are logically equivalent.

Discrete Mathematics
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Predicate:

𝑥 is greater than 3
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𝑥 is greater than 3
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Predicates and Quantifiers (1/14)

The subject The predicate

We can denote the statement "𝑥 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 3" by 𝑷 𝒙

where 𝑷 denotes the predicate "𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 3" and 𝒙 is the variable.

The statement 𝑷(𝒙) is also said to be the value of the propositional function 𝑷 at 𝒙.

Once a value has been assigned to the variable 𝒙, the statement 𝑷(𝒙) becomes a 

proposition and has a truth value. 

Discrete Mathematics



Example1:
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Predicates and Quantifiers (2/14)
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Solution 

We obtain the statement P(4) by setting x = 4 in the statement  

“x > 3.” Hence, P(4), which is the statement “4 > 3,” is true.

However, P(2), which is the statement “2 > 3,” is false.
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T F
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Quantifiers:

Expresses the extent to which a predicate is true over a 

range of elements.
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Universal Existential Uniqueness
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Quantifier

Universal Existential Uniqueness

∃! 𝒙𝑷(𝒙)

∃1𝒙𝑷(𝒙)

Discrete Mathematics
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Quantifier

Universal Existential Uniqueness

∃! 𝒙𝑷 𝒙 , ∃1𝒙𝑷(𝒙)

Discrete Mathematics
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Predicates and Quantifiers (9/14)
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Express the statement “Every student in this class has studied calculus.

Solution 𝑃(𝑥): 𝑥 has studied calculus. 

𝑆(𝑥): 𝑥 is in this class.

The statement can be expressed as   ))()(( xpxSx →



Example2:
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Translate into English

65©Ahmed Hagag Discrete Mathematics

Translate the statement ∀𝑥 𝐶 𝑥 ∨ ∃𝑦 𝐶 𝑦 ∧ 𝐹 𝑥, 𝑦 into  

English, where 𝐶(𝑥) is "x has a computer", 𝐹(𝑥, 𝑦) is "x and y are 

friends," and both x and y is the set of all  students in your school.

Every  student  in your  school  has a computer  or  has a friend  

who has a computer.

Solution

Predicates and Quantifiers (14/14)



Negating Quantified Expressions:

𝑃(𝑥) is the statement "𝑥 has taken a course in calculus" and 

the domain consists of the students in your class.

∀𝒙𝑷(𝒙) :
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Negating Quantified Expressions (1/4)
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Negating Quantified Expressions:

𝑃(𝑥) is the statement "𝑥 has taken a course in calculus" and 

the domain consists of the students in your class.

∀𝒙𝑷(𝒙) :

"Every student in your class has taken a course in calculus"
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Negating Quantified Expressions:

𝑃(𝑥) is the statement "𝑥 has taken a course in calculus" and 

the domain consists of the students in your class.

∀𝒙𝑷(𝒙) :

"Every student in your class has taken a course in calculus"

The negation of this statement is
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Negating Quantified Expressions:
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the domain consists of the students in your class.

∃𝒙𝑷(𝒙) :

“At least one student in your class has taken a course in calculus"
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Negating Quantified Expressions:

𝑃(𝑥) is the statement "𝑥 has taken a course in calculus" and 

the domain consists of the students in your class.

∃𝒙𝑷(𝒙) :

“At least one student in your class has taken a course in calculus"

The negation of this statement is

"Every student in this class has not taken calculus"
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Negating Quantified Expressions:

𝑃(𝑥) is the statement "𝑥 has taken a course in calculus" and 

the domain consists of the students in your class.

∃𝒙𝑷(𝒙) :

“At least one student in your class has taken a course in calculus"
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Negating Quantified Expressions:

𝑃(𝑥) is the statement "𝑥 has taken a course in calculus" and 

the domain consists of the students in your class.

∃𝒙𝑷(𝒙) :

“At least one student in your class has taken a course in calculus"

The negation of this statement is
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Video Lectures

https://www.youtube.com/playlist?list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz

Discrete Mathematics

All Lectures: 

Lecture #2:  https://www.youtube.com/watch?v=xCDQHgDQEUk&list=PLxIvc-

MGOs6gZlMVYOOEtUHJmfUquCjwz&index=4

https://www.youtube.com/watch?v=MipjqNYp3T4&list=PLxIvc-

MGOs6gZlMVYOOEtUHJmfUquCjwz&index=5

https://www.youtube.com/watch?v=nYtOiEtcYIs&list=PLxIvc-

MGOs6gZlMVYOOEtUHJmfUquCjwz&index=6

https://www.youtube.com/watch?v=mk0krQZNzoE&list=PLxIvc-

MGOs6gZlMVYOOEtUHJmfUquCjwz&index=7

https://www.youtube.com/playlist?list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz
https://www.youtube.com/watch?v=xCDQHgDQEUk&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=4
https://www.youtube.com/watch?v=xCDQHgDQEUk&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=4
https://www.youtube.com/watch?v=MipjqNYp3T4&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=5
https://www.youtube.com/watch?v=MipjqNYp3T4&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=5
https://www.youtube.com/watch?v=nYtOiEtcYIs&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=6
https://www.youtube.com/watch?v=nYtOiEtcYIs&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=6
https://www.youtube.com/watch?v=mk0krQZNzoE&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=7
https://www.youtube.com/watch?v=mk0krQZNzoE&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=7


Dr. Ahmed Hagag
ahagag@fci.bu.edu.eg
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