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Applications of Propositional Logic (1/13)
el
1- Translating English Sentences.

2- System Specifications.
3- Boolean Searches.
4- Logic Puzzles.

5- Logic Circuits.
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1- Translating English Sentences.
2- System Specifications.

3- Boolean Searches.

4- L_ogic Puzzles.

5- Logic Circuits.
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Applications of Propositional Logic (2/13)
e

Translating English Sentences

« There are many reasons to translate English sentences
Into expressions involving propositional variables and
logical connectives. In particular, English (and every
other human language) is often ambiguous. Translating
sentences Into compound statements (and other types of
logical expressions, which we will introduce later in this
chapter) removes the ambiguity.
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Applications of Propositional Logic (3/13)
e

Example 1

You can access the Internet from campus only If you are a
computer science major or you are not a student.
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& Applications of Propositional Logic (4/13)
e

Example 1

You can access the Internet from campus only If you are a
computer science major or you are not a student.

Solution:

Let p, g and r be the propositions:
p: You can access the Internet from campus.

q: YOu are a computer science major.
r: You are a student.
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& Applications of Propositional Logic (4/13)
e

Example 1

(You can access the Internet from campus) only if (you are
a computer science major or you are not a student).

Solution:

Let p, g and r be the propositions:

pP—q
“ponly if g”

p: You can access the Internet from campus.
q: YOu are a computer science major.
r: You are a student.
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& Applications of Propositional Logic (5/13)
et
Example 1

(You can access the Internet from campus) only if (you are
a computer science major or you are not a student).

Solution:

P—4q

Let p, g and r be the propositions: ,
“ponly if g”

p: You can access the Internet from campus.
q: YOu are a computer science major.

r: You are a student.

The sentence can be represented by logicas | ? — (@ V —r)
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Q) Applications of Propositional Logic (6/13)
et

Example 2

The automated reply cannot be sent when the file system is
full.
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Applications of Propositional Logic (7/13)
ekapdn e

Example 2

The automated reply cannot be sent when the file system is
full.

Solution:

Let p and g be the propositions:

p: The automated reply can be sent .
q: The file system is full.
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) Applications of Propositional Logic (8/13)
et

Example 2

(The automated reply cannot be sent) when (the file system
Is full.)

Solution:

Let p and g be the propositions:

p: The automated reply can be sent .
q: The file system is full.

The sentence can be represented by logic as q— p
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) Applications of Propositional Logic (9/13)
et

L_ogic Circuits

« A logic circuit (or digital circuit) receives input signals
D1, D2, - » Py, €ach a bit [either O (off) or 1 (on)], and
produces output signals s4, s, ... , S5, €ach a bit.

* In this course, we will restrict our attention to logic
circuits with a single output signal; in general, digital
circuits may have multiple outputs.
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Q) Applications of Propositional Logic (10/13)
e

L_ogic Circuits

« Complicated digital circuits can be constructed from
three basic circuits, called gates.

p PVq
A—
OR gate
p —" >O—>_']9 P 4’ PANG
q >
Invert
nverter AND gate
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Applications of Propositional Logic (11/13)
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Example 1

« Determine the output for the combinatorial circuit in the
following figure.

P

>
q —>>O—> ) )
S gy

\ >
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Applications of Propositional Logic (11/13)

elibuoil lSilly Sluwlall duls

Example 1

« Determine the output for the combinatorial circuit in the
following figure.

P

’ —>>o—:j ::D }

q

o
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Applications of Propositional Logic (11/13)

elibuoil lSilly Sluwlall duls

Example 1

« Determine the output for the combinatorial circuit in the
following figure.

p P \rAg

q 4’>O—.—} J —D >
q

——Ho—
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Applications of Propositional Logic (11/13)

elibuoil lSilly Sluwlall duls

Example 1

« Determine the output for the combinatorial circuit in the
following figure.

p P \rAg
q 4}>O—} / —}D (p A-g)Vr
- S D>

q

o
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@) Applications of Propositional Logic (12/13)
L

Example 2

 Build a digital circuit that produces the output
V) A(=pV(qV r))

when given input bits p, g, and .
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% Applications of Propositional Logic (13/13)
e

Example 2

(pV-r)|A(mpV(qV ar))

p pVr
.
r
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% Applications of Propositional Logic (13/13)

elibuoil lSilly Sluwlall duls

Example 2

(pV-ar) Al(-p V (@ V r))

HDC 7
P

1 pVI(gV-r)
r gV r

=y
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% Applications of Propositional Logic (13/13)

elibuoil lSilly Sluwlall duls

Example 2

(pVar) A(mp Vv (qV r))

p pVr
,

r

P ::::[::>_>
p———)+>0

1 pVI(gV-r)
r gV r

=y
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Compound Propositions Classification (1/2)

elibuoil lSilly Sluwlall duls

Compound Propositions

|

¥ v \
Tautology Contradiction Contingency
A compound proposition A compound proposition A compound proposition
that is always true that is always false that is sometimes true

and sometimes false
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Compound Propositions Classification (2/2)
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Example:

 Show that following conditional statement is a tautology
by using truth table

(pAq)—Dp
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an Compound Propositions Classification (2/2)
e

Example:

 Show that following conditional statement is a tautology
by using truth table

(pAq) >p
IR
T T T T
T F F T
F T F T
F F F T
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Logical Equivalences (1/6)
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Logically equivalent:

The compound propositions p and ¢ are called logically equivalent if p « ¢ 1s a tautology.
The notation p = ¢ denotes that p and ¢ are logically equivalent.

Compound propositions that have the same truth values in
all possible cases are called logically equivalent.
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% Logical Equivalences (2/6)
et

Examplel:

Show that —(p Vv q) and —p A —g are logically equivalent.
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Logical Equivalences (3/6)
e i e
Examplel:

Show that —(p Vv q) and —p A —g are logically equivalent.

Truth Tables for —(p v ¢) and —p A —g.

pVq —(pVq) —p —q —p Agq

oo o S
oS e o B I TS
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Logical Equivalences (3/6)
e i e
Examplel:

Show that —(p Vv q) and —p A —g are logically equivalent.

Truth Tables for —(p v ¢) and —p A —g.
p q pVq —(pVq) —p g —p A g
T T T
T F T
F T T
F F F
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Logical Equivalences (3/6)
e i e
Examplel:

Show that —(p Vv q) and —p A —g are logically equivalent.

Truth Tables for —(p v ¢) and —p A —g.
p q pVq —(pVq) —p g —p A g
T T T F
T F T F
F T T F
F F F T
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Logical Equivalences (3/6)
e i e
Examplel:

Show that —(p Vv q) and —p A —g are logically equivalent.

Truth Tables for —(p v ¢) and —p A —g.

pVq —(pVq) —p —q —p Agq

oo o S
oS e o B I TS
so SR IS
— T
—= 3 T
— o
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Logical Equivalences (3/6)
e i e
Examplel:

Show that —(p Vv q) and —p A —g are logically equivalent.

Truth Tables for —(p v ¢) and —p A —g.

p q pVq —(pVq) —p g —p A g
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

©Ahmed Hagag Discrete Mathematics 31




Logical Equivalences (3/6)
e i e
Examplel:

Show that —(p Vv q) and —p A —g are logically equivalent.

Truth Tables for —(p v ¢) and —p A —g.

p q pVq —(pVq) —p g —p A g
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T
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Logical Equivalences (4/6)
B
Logical Equivalences (1/3)

Logical Equivalences.
Equivalence Name
pANT=p Identity laws
pVF=p
pvT=T Domination laws
pANF=F
PVp=p Idempotent laws
PAP=EDPp
(7 p)=p Double negation law
pVg=qg\Vp Commutative laws
PNG=qAp
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Logical Equivalences (4/6)
D i
Logical Equivalences (2/3)

Logical Equivalences.

(pVvgVr=pVv(@Vvr) Associative laws
PAQQAT=pA(GAT)

pV@Ar)=pPVg APVr) Distributive laws
pA@@Vr)=p@PAqQV(PAT)

“(pAg)=-pV g De Morgan’s laws
PV =pAg

pV(PAg =p Absorption laws
PAPVg=p

pvVp=T Negation laws
pAp=F
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Logical Equivalences (4/6)
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Logical Equivalences (3/3)

Logical Equivalences Logical

Involving Conditional Equivalences Involving
Statements. Biconditional Statements.
p—=>qg="pVq peg=@E—>q9 A(g—p)
p—=>4q=7"q—> P P < qd="p < g
PVg=Tp—q Ppeog=(pPAq)V(pAg)
P/\QE_'(P*_‘C]) ﬂ(p(—)Q)EP(—)f—!q
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% Logical Equivalences (5/6)
et

Example 1:

Show that =(p vV (=p A q)) and —=p A —q are logically equivalent.
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Logical Equivalences (6/6)
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Example 1:

Show that =(p vV (=p A q)) and —=p A —q are logically equivalent.

“pV(EpAg)=-pA-(TpAg) by the second De Morgan law

“(pAg)=-pV g De Morgan’s laws
“(pPVqg =-pAq

©Ahmed Hagag Discrete Mathematics 37




Logical Equivalences (6/6)
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Example 1:

Show that =(p vV (=p A q)) and —=p A —q are logically equivalent.

“pV(EpAg)=-pA-(TpAg) by the second De Morgan law
=-p A[(7p)V g] by the first De Morgan law
“(pAg)=-pV g De Morgan’s laws

“(pVqg)=-pAg
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Logical Equivalences (6/6)
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Example 1:

Show that =(p vV (=p A q)) and —=p A —q are logically equivalent.

“pV(EpAg)=-pA-(TpAg) by the second De Morgan law
=-pA[-(mp)Vg] by the first De Morgan law
=-pA(pVq) by the double negation law

-(mp)=p Double negation law
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P Logical Equivalences (6/6)
..
Example 1:

Show that =(p vV (=p A q)) and —=p A —q are logically equivalent.

“(pV(EpAQ)=-pA-(pAQg) by the second De Morgan law
=-pA[-(mp)Vg] by the first De Morgan law
=-pA(pVq) by the double negation law
=(pAp)V(p A-g) by the second distributive law

pV@Ar)=pPEVg A(pVr) Distributive laws
pA@Vr)=pPAg)V(pAT)
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Logical Equivalences (6/6)
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Example 1:

Show that =(p vV (=p A q)) and —=p A —q are logically equivalent.

“(pV(EpAQ)=-pA-(pAQg) by the second De Morgan law
=-pA[-(mp)Vg] by the first De Morgan law
=-pA(pVq) by the double negation law
=(pAp)V(p A-g) by the second distributive law
=FV(pA-g) because "p Ap =F
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Logical Equivalences (6/6)
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Example 1:

Show that =(p vV (=p A q)) and —=p A —q are logically equivalent.

“(pV(EpAQ)=-pA-(pAQg) by the second De Morgan law
=-pA[-(mp)Vg] by the first De Morgan law
=-pA(pVq) by the double negation law
=(pAp)V(p A-g) by the second distributive law
=FV(pAg) because "p Ap =F
=(pA-q)VF by the commutative law for disjunction

pVgG=qgVp Commutative laws
PAG=qGAPp
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Logical Equivalences (6/6)
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Example 1:

Show that =(p vV (=p A q)) and —=p A —q are logically equivalent.

“(pV(EpAQ)=-pA-(pAQg) by the second De Morgan law
=-pA[-(mp)Vg] by the first De Morgan law
=-pA(pVq) by the double negation law
=(pAp)V(p A-g) by the second distributive law
=FV(pAg) because "p Ap =F
=(pA-q)VF by the commutative law for disjunction
=pATq by the identity law for F
pAT=p Identity laws
pvFE=p
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Example 1:

Logical Equivalences (6/6)

Show that =(p vV (=p A q)) and —=p A —q are logically equivalent.

“(pV(pAg)

=P A —|(—|p A q)
=P A [_I(_Ip) V —|q]
=pAPVg)

=(pAp)V(pA-q)

=FV(pA-q)
=(pA-gq) VF

=P ATg

©Ahmed Hagag

by the second De Morgan law

by the first De Morgan law

by the double negation law

by the second distributive law

because pAp=F

by the commutative law for disjunction

by the identity law for F
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% Predicates and Quantifiers (1/14)
et

Predicate:

x is greater than 3
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& Predicates and Quantifiers (1/14)
R

Predicate:

x||is greater than 3

N

The subject The predicate

We can denote the statement "x is greater than 3" by P(x)
where P denotes the predicate "is greater than 3" and x is the variable.

The statement P(x) is also said to be the value of the propositional function P at x.
Once a value has been assigned to the variable x, the statement P(x) becomes a
proposition and has a truth value.
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Predicates and Quantifiers (2/14)
L

Examplel:

Let P(x) denote the statement “x > 3.”
What are the truth values of P(4) and P(2)?
Solution

We obtain the statement P(4) by setting X = 4 in the statement
“x >3.” Hence, P(4), which is the statement “4 > 3,” is true.
However, P(2), which is the statement “2 > 3,” is false.
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% Predicates and Quantifiers (2/14)
et

Examplel:

Let P(x) denote the statement “x > 3.”

What are the truth values of P(4) and P(2)?
T F
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Predicates and Quantifiers (3/14)
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Example2:

Let Q(x, y) denote the statement “x = y + 3.”
What are the truth values of the propositions

0(1,2) and O(3, 0)?
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Q) Predicates and Quantifiers (3/14)
e

Example2:

Let Q(x, y) denote the statement “x = y + 3.”
What are the truth values of the propositions

0(1,2) and O(3, 0)?
F T
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% Predicates and Quantifiers (4/14)
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Quantifiers:

Expresses the extent to which a predicate Is true over a

range of elements.

Universal Existential Uniqueness
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% Predicates and Quantifiers (5/14)
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Quantifiers:
I
I | |

VxP(x)

The universal quantification of P(x) is the statement

“P(x) for all values of x in the domain.”
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% Predicates and Quantifiers (6/14)

welibol il Oluwlall duls

Quantifiers:
I
I | |
M

3x P(x)

The éﬁstential quantification of P(x) is the proposition

“There exists an element x in the domain such that P(x).”
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Predicates and Quantifiers (7/14)

el clsilly Ciluwlall dgls

Quantifiers:
I
I | |

A xP(x)
3, xP(x)

“There exists a unique x such that P(x) is true.”
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Predicates and Quantifiers (8/14)

welibol il Oluwlall duls

Quantifiers:
I

VxP(x) 3x P(x) A1 xP(x), 3,xP(x)
TABLE 1 Quantifiers.
Statement When True? When False?
Vx P(x) P(x) is true for every x. There is an x for which P(x) is false.
dx P(x) There is an x for which P(x) is true. P(x) is false for every x.
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Q) Predicates and Quantifiers (9/14)
e

Examplel:

Express the statement “Every student in this class has studied calculus.

Solution P(x): x has studied calculus.

S(x): x isin this class.

The statement can be expressed as | VX(S(x) = p(x))
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Q) Predicates and Quantifiers (10/14)
L

Example2:

Let P(x) be the statement “x + 1 > x.”

What is the truth value of the quantification Vx P(x),

where the domain consists of all real numbers?
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Q) Predicates and Quantifiers (10/14)
L

Example2:

Let P(x) be the statement “x + 1 > x.”

What is the truth value of the quantification Vx P(x),

where the domain consists of all real numbers?

Solution: Because P(x) is true for all real numbers x, the quantification
Vx P(x)

1S true.
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Q) Predicates and Quantifiers (11/14)
el

Example3:

Let O(x) be the statement “x < 2.”

What is the truth value of the quantification Vx Q(x), where
the domain consists of all real numbers?
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a Predicates and Quantifiers (11/14)
e

Example3:

Let O(x) be the statement “x < 2.”

What is the truth value of the quantification Vx Q(x), where
the domain consists of all real numbers?

Solution: Q(x) 1s not true for every real number x,
because, for instance, Q(3) is false. That is,

x = 3 1s a counterexample for the statement Vx Q(x). Thus

Vx Q(x) 1s false.
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Q) Predicates and Quantifiers (12/14)
et

Example4:

Let P(x) denote the statement “x > 3.”
What is the truth value of the quantification 3x P(x),

where the domain consists of all real numbers?
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Predicates and Quantifiers (12/14)
e

Example4:

Let P(x) denote the statement “x > 3.”
What is the truth value of the quantification 3x P(x),

where the domain consists of all real numbers?

Solution: Because “x > 3” is sometimes true—for instance,

when x = 4—the existential quantification of P(x),

which 1s 3x P(x), is true.
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Q) Predicates and Quantifiers (13/14)
L

Example5:

What is the truth value of 3x P(x),

where P(x) is the statement “x? > 10” and the universe of

discourse consists of the positive integers not exceeding 4?
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) Predicates and Quantifiers (13/14)
et

Example5:

What is the truth value of 3x P(x),

where P(x) is the statement “x? > 10” and the universe of

discourse consists of the positive integers not exceeding 4?

Solution: Because the domain 1s {1, 2, 3, 4},
the proposition 3xP(x) is the same as the disjunction

P(l)vPR2)Vv P@3B)Vv P@4).
Because P(4), which is the statement “4* > 10,” is true,

it follows that Ix P(x) is true.
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) Predicates and Quantifiers (14/14)
et

Translate into English

Translate the statement Vx (C (x) vIy(C(y) AF(x, y))) into

English, where C(x) Is "x has a computer”, F(x,y) is "x and y are
friends," and both x and y is the set of all students in your school.

Solution

Every student in your school has a computer or has a friend
who has a computer.
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Negating Quantified Expressions (1/4)
L

Negating Quantified Expressions:

P(x) Is the statement "x has taken a course In calculus™ and
the domain consists of the students in your class.

VxP(x) :
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Negating Quantified Expressions (1/4)
L

Negating Quantified Expressions:

P(x) Is the statement "x has taken a course In calculus™ and
the domain consists of the students in your class.

VxP(x) :

"Every student in your class has taken a course in calculus"
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) Negating Quantified Expressions (2/4)
e

Negating Quantified Expressions:

P(x) Is the statement "x has taken a course In calculus™ and
the domain consists of the students in your class.

VxP(x) :

"Every student in your class has taken a course in calculus"

The negation of this statement is
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& Negating Quantified Expressions (2/4)
el

Negating Quantified Expressions:

P(x) Is the statement "x has taken a course In calculus™ and
the domain consists of the students in your class.

VxP(x) :
"Every student in your class has taken a course in calculus"

The negation of this statement is

"There Is at least one student in your class who has not taken a course
In calculus”
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& Negating Quantified Expressions (2/4)
el

Negating Quantified Expressions:

P(x) Is the statement "x has taken a course In calculus™ and
the domain consists of the students in your class.

VxP(x) :
"Every student in your class has taken a course in calculus"

The negation of this statement is

"There Is at least one student in your class who has not taken a course
In calculus”

—|V.X'P(X)
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& Negating Quantified Expressions (2/4)
el

Negating Quantified Expressions:

P(x) Is the statement "x has taken a course In calculus™ and
the domain consists of the students in your class.

VxP(x) :
"Every student in your class has taken a course in calculus"

The negation of this statement is

"There Is at least one student in your class who has not taken a course
In calculus”

—VxP(x) = 3x—-P(x)
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Negating Quantified Expressions (3/4)
et

Negating Quantified Expressions:

P(x) Is the statement "x has taken a course In calculus™ and
the domain consists of the students in your class.

dxP(x) -
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@ Negating Quantified Expressions (3/4)
el
Negating Quantified Expressions:

P(x) Is the statement "x has taken a course In calculus™ and
the domain consists of the students in your class.

dxP(x) -

“At least one student in your class has taken a course in calculus"
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Negating Quantified Expressions (4/4)
L
Negating Quantified Expressions:

P(x) Is the statement "x has taken a course In calculus™ and
the domain consists of the students in your class.

dxP(x) :
“At least one student in your class has taken a course in calculus"

The negation of this statement is
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Negating Quantified Expressions (4/4)
L
Negating Quantified Expressions:

P(x) Is the statement "x has taken a course In calculus™ and
the domain consists of the students in your class.

dxP(x) :
“At least one student in your class has taken a course in calculus"

The negation of this statement is

"Every student in this class has not taken calculus"
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& Negating Quantified Expressions (4/4)
it
Negating Quantified Expressions:

P(x) Is the statement "x has taken a course In calculus™ and
the domain consists of the students in your class.

dxP(x) :
“At least one student in your class has taken a course in calculus"

The negation of this statement is

"Every student in this class has not taken calculus"

—EIxP(x)
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& Negating Quantified Expressions (4/4)
it
Negating Quantified Expressions:

P(x) Is the statement "x has taken a course In calculus™ and
the domain consists of the students in your class.

dxP(x) :
“At least one student in your class has taken a course in calculus"

The negation of this statement is

"Every student in this class has not taken calculus"
—3xP(x) = Vx—P(x)
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D Video Lectures
e i et 3

All Lectures: https://www.youtube.com/playlistZlist=PLxlvc-MG0sBaZIMVYOOEtUHJmfUquCjwz

|ecture #2: https://www.youtube.com/watch?v=xCDOHaDOELKElist=PLxlvc-
MGOsBgZIMVYOOEtUHmfllquCjwzhindex=4

https://www.youtube.com/watch?v=MipjgNYp3T4alist=PLxlvc-
MGOsBgZIMVYDOEtUHmillquCijwzGindex=a

https://www.youtube.com/watch?v=nYtliktcYlshlist=PlLxlvc-
MGOsBgZIMVYOOEtUHmfUquCijwzindex=6

https://www.youtube.com/watch?v=mkUOkrJ/Nzok&list=PLxlvc-
MGOsBgZIMVYOOEtUHImilqulijwzaindex=7
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https://www.youtube.com/playlist?list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz
https://www.youtube.com/watch?v=xCDQHgDQEUk&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=4
https://www.youtube.com/watch?v=xCDQHgDQEUk&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=4
https://www.youtube.com/watch?v=MipjqNYp3T4&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=5
https://www.youtube.com/watch?v=MipjqNYp3T4&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=5
https://www.youtube.com/watch?v=nYtOiEtcYIs&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=6
https://www.youtube.com/watch?v=nYtOiEtcYIs&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=6
https://www.youtube.com/watch?v=mk0krQZNzoE&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=7
https://www.youtube.com/watch?v=mk0krQZNzoE&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=7

Thank You

Dr. Ahwed Hagag
ahagag(@fci.bu.edu.eg
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